If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+32r+5=0
a = 1; b = 32; c = +5;
Δ = b2-4ac
Δ = 322-4·1·5
Δ = 1004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1004}=\sqrt{4*251}=\sqrt{4}*\sqrt{251}=2\sqrt{251}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-2\sqrt{251}}{2*1}=\frac{-32-2\sqrt{251}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+2\sqrt{251}}{2*1}=\frac{-32+2\sqrt{251}}{2} $
| A=4x(9x+6) | | 0=6x^2+17x+7 | | 6h-4=3h-7 | | 5x+15=7x+23 | | (3x^2-5x-4)=(x^2-6x-7) | | 3x+16=60/× | | 13-3n=n+1 | | 12=-3(y+6) | | 10-m=-3-2 | | |4x-3|/9=|7x+8| | | 64x=8x-3 | | -3w=-10-4w | | x+135+10=180 | | 5(2v-7)=95 | | 8+x+0+15=30 | | D^2+10d+25=X+3 | | 9t+4=-8+6t | | 7-w=18 | | 185-427x=1793 | | 2x+10=- | | -3=(x+2x2+3x) | | -10+4s=5s | | 6/7y-10=-4 | | 2-3r=1-4r | | (-9/4)-4/9(2x-4)=48 | | -b=9-4b | | 22+4(18+y)-12=144 | | 8.4x+x=470 | | −7x2+x+9=−6x | | -1-3(2z+1)=2 | | 2+3/4x=9/10 | | -8z=-10z-8 |